Formation of waterfalls by intermittent burial of active faults

Luca C. Malatesta† and Michael P. Lamb
Division of Geological and Planetary Sciences, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA

ABSTRACT

Waterfalls commonly exist near bounding faults of mountain ranges, where erosional bedrock catchments transition to depositional alluvial fans. We hypothesize that aggradation on alluvial fans can bury active faults, and that the faults accumulate slip in the subsurface to produce a bedrock scarp. Following entrenchment of the alluvial fan, the scarp can be exposed as a waterfall. To explore this hypothesis, we derived a geometric model for waterfall height that depends on alluvial fan length and the relative time scales of (1) tectonic uplift, (2) a forcing mechanism for cycles of fan aggradation and incision, and (3) a response of fan aggradation to changes in sediment flux. We find that the model is consistent with observations at Gower Gulch, Death Valley, California, where a man-made drainage capture event in 1941 caused rapid fan incision and exposed a waterfall at the canyon-fan transition. We also compared the model to 62 waterfalls in 18 catchments of the Death Valley area and found that at least 15 of the waterfalls are best explained by the fault-burial mechanism. Using field measurements of grain size and channel geometries, we show that the fault-burial mechanism can produce the observed waterfall heights, measuring 4–19 m, under a uniform climatic forcing scenario requiring variations of 20% in precipitation during the late Pleistocene. The fault-burial mechanism, through the creation of upstream propagating waterfalls, may allow catchment-fan systems to experience frequent cycles of enhanced erosion in catchments and deposition on fans that likely convolve tectonic and climatic signals.

INTRODUCTION AND MOTIVATION

Waterfalls and steep bedrock steps are important components of mountain river systems, and they can serve as an agent to transfer tectonic, climatic, or autogenic signals upstream through a catchment (e.g., Howard, 1994; Clark et al., 2005; Wobus et al., 2006; Berlin and Anderson, 2007; Whipple et al., 2013; DiBiase et al., 2014). Retreating waterfalls and steps can produce fluval terraces that are important landforms in tectonic and climatic reconstructions (Crosby and Whipple, 2006; Finnegan and Balco, 2013; DiBiase et al., 2014). Their migration forces a pulse of erosion by lowering the local base level of the adjacent hillslopes, which temporarily increases sediment delivery to the fluvial system (Hughes and Keller, 1995; Carretier and Lucazeau, 2005; Gallen et al., 2011; Attal et al., 2015).

Several mechanisms and origins have been proposed to account for the formation of waterfalls in specific conditions. Relative eustatic forcing of sea cliffs results in knickpoints and waterfalls (Hayakawa and Matsukura, 2003; Bishop et al., 2005; Mackey et al., 2014). Large slumps can initiate waterfalls (Lamb et al., 2007). Preexisting topography of deep glacial valleys with vertical walls results in spectacular waterfalls. Differential incision rates between trunk stream and tributary can also create waterfalls at their confluence (Hayakawa and Matsukura, 2003). Cutoffs in bedrock meanders are another way to produce waterfalls within a river system (H.N. Johnson and N.J. Finnegan, 2017, personal commun.). Seismic slip with large throw can create waterfalls, like along the Tachia River in Taiwan following the 1999 Mw 7.6 Chi-Chi earthquake (Chen et al., 2002; Lee et al., 2005; Huang et al., 2013; Cook et al., 2013). Climatic forcing can also lead to the widespread creation of waterfalls (Crosby and Whipple, 2006). Waterfalls can develop at lithological boundaries with great changes in erodibility (Cook et al., 2009) and in vertically bedded substrates (Frankel et al., 2007). Finally, steepening of bedrock reaches and the coalescence of small steps in bedrock river channels form autogenic waterfalls in upstream reaches (Sklar and Dietrich, 2004; Chatanantavet and Parker, 2009; Whipple et al., 2013).

Despite this extensive work on the creation of waterfalls, many waterfalls exist without a clear formation mechanism. For example, significant waterfalls are common near the outlet of fault-bounded mountain catchments in the Death Valley area in the southwest United States (Fig. 1; this study). Many of these waterfalls have heights too large to be explained by coseismic throw, and no clear lithostatic controls can account for their location. To help explain these anomalous waterfalls—building off ideas of Humphrey and Keller (1995), Carretier and Lucazeau (2005), and Pepin et al. (2010)—Finnegan and Balco (2013) recently proposed a new mechanism to account for large waterfalls in the lower reaches of a catchment: burial of a fault by the aggradation of an alluvial fan immediately downstream of an active dip-slip fault. This raises the relative base level of the catchment, and tectonic slip can accumulate to that new level. If the fan incises again, it then exposes a waterfall that can retreat upstream. We call it the fault-burial mechanism. Transport-limited rivers flowing on alluvial fans are sensitive to environmental changes. Their bed slope scales inversely with water discharge and scales positively with the ratio of sediment flux over water discharge (Gilbert and Murphy, 1914; Mackin, 1948; Hooke, 1968; Schumm, 1973; Leopold and Bull, 1979). In particular, an increase in the ratio of sediment supply to water discharge, \( Q/Q^w \), is thought to cause an increase in the channel-bed slope on the alluvial fan and result in fan aggradation, whereas a decrease in \( Q/Q^w \) should drive fan entrenchment (Wells and Harvey, 1987; Harvey et al., 1999; DelLong et al., 2008; Rohais et al., 2012). In addition, climatic changes can affect channel-bed slopes through changes in sediment grain sizes, \( D \), that are supplied to channels from hillsides and by different competencies of the higher-discharge flows (Lane, 1937; Leopold...
WATERFALL GENERATION

MODEL FOR WATERFALL GENERATION

Of the many landscapes that combine active faults and alluviation, we chose to conceptualize the fault-burial mechanism in coupled catchment-fan systems. Coupled catchment-fan systems are small, self-contained, complete sediment-routing systems that are well studied as elemental landscapes to understand the fundamental dynamics ruling larger systems (Allen and Densmore, 2000; Densmore et al., 2007; Stock et al., 2008). Here, we modeled fan slopes as linear for simplicity, following Allen and Densmore (2000).

Consider the simple geometry where the alluvial channel on the fan alternates between two linear slopes, which have the same horizontal length and which hinge on the same base level, so that the channel always ends at the same point (Fig. 2). This type of fan geometry occurs, for example, if there is an important valley channel along the toe of the fan that removes sediment there, or if fan aggradation is balanced by subsidence so that the toe of the fan is fixed (Hooke, 1968; Whipple and Trayler, 1996). A forcing time scale, which could be allogenic or autogenic, would pace the alternation between steep and gentle channel configurations. A transition from gentle-slope (Fig. 2A) to steep-slope (Fig. 2B) configuration results in channel aggradation, which drives alluvial backfilling upstream of the fault scarp, burying the bedrock scarp (e.g., Frankel et al., 2015). Erosion of the bedrock scarp at the canyon-fan transition stops as long as it is shielded under alluvium. The elevation of the now-buried bedrock bed immediately upstream of the scarp increases with repeated earthquakes, thinning the alluvial cover until bedrock is again exposed in the riverbed at the scarp (Fig. 2C). Once bedrock is again exposed at the scarp, throw cannot accumulate anymore. The offset of any new earthquake will be transmitted upstream by scarplift. When the channel on the fan transitions back to the gentle slope configuration, the exposed fault scarp forms a waterfall (Fig. 2D). The waterfall then retreats upstream to propagate the base-level fall through the catchment. The fault-burial mechanism allows tectonic slip to accumulate over several seismic cycles and results in waterfall heights that can be multiple times larger than coseismic throw.

In this simple scenario, the maximum height of the scarp, \( h_{\text{max}} \), is the product of the difference between steep and gentle equilibrium alluvial-bed slopes, \( \Delta S = S_{\text{steep}} - S_{\text{gentle}} \), and the length of the fan, \( L_{\text{fan}} \), or:

\[
h_{\text{max}} = \Delta S \cdot L_{\text{fan}}
\]

To model channels with radial profiles departing strongly from the linear slope assumption, Equation 1 would need to be adjusted. Equation 1 defines a maximum exposed scarp height because the time scale of forcing, \( t_d \), during which the fan channel is in a steep-slope configuration might be shorter than what is needed for the uplifting bedrock scarp to grow to its full potential \( h_{\text{max}} \). The waterfall height can also be limited because a fan may adjust slowly in response to allogenic forcing (e.g., climate), and its channel
Figure 2. Illustration of the fault-burial mechanism in regime I: a river flows from an uplifting bedrock block (left) onto an alluvial fan (right). The inset plots show the evolution of the alluvial equilibrium local slope, $S$, over time as the system is disturbed by a phase of aggradation followed by a return to initial conditions. (A) At equilibrium, the alluvial fan grades into the bedrock channel at the scarp, where a break in slope reflects the change from detachment-limited to transport-limited equilibriums. (B) A change in equilibrium slope forces aggradation of the alluvial fan, and the bedrock channel backfills, effectively shielding it from fluvial erosion until the alluvium is stripped. The maximum height of the future waterfall ($h_{\text{max}}$) is set by the thickness of alluvium above the scarp. (C) Uplift ($U$), sets the entire bedrock reach to the surface during the shielding period. (D) When the fan incises to return to its initial gentle slope, it exposes a waterfall at the location of the scarp. The tectonic displacement thus accumulated is released at once and retreats upstream in the drainage (dashed profile). Here, $t_f$ is the time scale of forcing, and $L_{\text{fan}}$ is the length of the fan.

Figure 3. Three time-scale regimes determine the effective height of the scarp: regime I determines maximal height $h_{\text{max}}$, regime II determines the total uplift reached during the shielding period, $h_{\text{up}}$, and regime III determines the thickness of sediment aggradation, $h_{\text{sed}}$ at the scarp. The regimes depend on the relative durations of the forcing, sedimentary, and uplift time scales ($t_f$, $t_s$, and $t_u$, respectively). The contour lines mark waterfall heights normalized by $h_{\text{max}}$. The relative time scales of the sites in Saline, Panamint, and Death Valleys are indicated with circles, crosses, and diamonds, respectively.

Finally, (3) the sedimentary time scale, $t_s$, determines how long it takes for the alluvial channel to aggrade to the new higher elevation at the scarp, where $t_s$ is a function of the volume ($V$) of the reach in the new geometry and of the coarse sediment flux from the catchment necessary to fill this volume, which is the product of the coarse fraction of the total flux, $f_{\text{course}}$, erosion rate, $E$, and drainage area, $A$. However, the pattern and rate of sediment deposition on the fan depend on changes in channel width, flood hydrograph, pattern of tectonic accommodation, initial grain-size composition, and downstream fining, so that in general:

$$t_s \leq \frac{V}{f_{\text{course}} EA}$$

The relative durations of $t_f$, $t_s$, and $t_u$ define three regimes of waterfall heights (Fig. 3). In regime I, the forcing time scale is the longest ($t_f > t_s$ and $t_s > t_u$), the scarp has enough time to aggrade and steepen to a new base level, and the scarp height reaches its maximum value given by Equation 1 (as is the case in Fig. 2). In regime II, the uplift time scale is the longest ($t_u > t_s$ and $t_s > t_f$), the scarp does not grow fast enough to reach the new base level before the alluvial channel incises again, and the scarps are limited to

$$h_{\text{up}} = U t_f = h_{\text{max}} \left( \frac{t_f}{t_u} \right)^{-1}.$$
see that regimes II and III share a common boundary, where \( t_f = t_s \). Uplift and sediment-limited heights must be conformable along this boundary so that

\[
h_{\text{sed}} = h_{\text{max}} \left( \frac{t_f}{t_s} \right)^{1/3},
\]  

(5)

We normalize Equations 4 and 5 by \( h_{\text{max}} \) to obtain three nondimensional formulas that are functions of the axes of the regime plot shown in Figure 3.

**MODEL APPLICATION TO EXTERNAL FORCING**

The conceptual model we put forward can be explored in field cases where simple fan-catchment systems contain large unexplained waterfalls. After establishing the time scales \( t_f, t_s \), and \( t_c \), the model regime can be determined and the expected waterfall height defined.

The waterfall height in regime I is set by the change in channel slope, \( \Delta S \), and the length of the fan, \( L_{\text{fan}} \) (Eq. 1). \( L_{\text{fan}} \) can be measured on maps and satellite images. \( \Delta S \) can be measured if the fan is presently at the gentle equilibrium configuration, and the relict higher-gradient configuration is preserved in the fan morphology. Otherwise, the gentle slope is buried, and only the steep slope is observable in the field. In that case, the gentle slope can be deduced with hydraulic resistance equations under the assumption of constant bankfull Shields stress (Paola et al., 1992) as described below.

The geometry of a transport-limited alluvial channel is largely set by the hydraulic parameters of water discharge and sediment transport capacity, as well as the sediment grain size (Parker, 1978). Conversely, we can retrieve hydraulic parameters from surveyed channel geometries using empirical equations. Water discharge, \( Q_s \), can be evaluated following conservation of mass from cross-section-averaged flow velocity, \( u \), bankfull water depth, \( h_b \), and the computed width, \( w \), obtained by dividing the surveyed cross-section area by \( h_b \):

\[
Q_s = u h_b w.
\]  

(6)

Flow velocity, in turn, can be estimated using a version of the Manning-Strickler relation for the resistance of steady uniform flow as formulated by Parker (1991):

\[
u = \frac{u}{u_s} = \frac{h_b^{1/6}}{k^{1/6}}.
\]  

(7)

in which \( u_s \) is the bed shear velocity equal to \( \sqrt{\frac{g R D}{k}} \), \( R \) is the hydraulic radius, and \( k \) is the bed roughness length scale equal to twice the \( D_g \) grain-size percentile. Bed-load sediment transport, \( Q_w \), is determined by an empirical law (Meyer-Peter and Müller, 1948; Wong and Parker, 2006):

\[
\frac{Q_w}{(R g D)^{1/2}} = 4.6 W (\tau_{s_f} - \tau_{s_i})^{6/5},
\]  

where \( R \) is the submerged density of the sediment, \( W \) is the width of the channel from bank to bank, \( \tau_{s_f} \) is the skin friction component of bank-full Shields number \( \tau_{s_i} \), and \( \tau_{s_i}(S) \) is the slope-dependent critical Shields number (Lamb et al., 2008). Most self-formed alluvial rivers tend to affect a single variable in a catchment-fan system. However, we argue that for small catchment-fan systems, it is reasonable to consider changes in water discharge as the first-order driver of channel slope variations on the

Equations 8 and 9, where \( R = f_{\text{sed}} \times h_b \) with \( f_{\text{sed}} = \frac{R}{s} \) and finally solve for \( S \) to obtain an equation for the equilibrium slope as a function of sediment and water fluxes:

\[
S = \left[ \frac{Q_s}{(R g D)^{1/2}} \right]^{5/8} + \frac{R_D}{f_{\text{sed}} m} \left( \frac{1.18 W^{1/2}}{g S^{1/2}} \right)^{3/5}.
\]  

(10)

Equation 10 illustrates how alluvial slope is sensitive to changes in \( Q_s, Q_w, W \), and \( D \) (Fig. 4). Equation 10 can be combined with Equation 1 to calculate the maximum waterfall height, \( h_{\text{max}} \), for given environmental changes that produce a change in channel-bed slope. Depending on the relative magnitudes of time scales \( t_f, t_s \), and \( t_c \), the expected waterfall heights in the uplift- or sedimentation-limited regimes, \( h_{\text{up}} \) and \( h_{\text{sed}} \), can then be found from Equations 4 and 5. On the other hand, if waterfall heights can be readily measured in the field, Equations 1 and 10 can be used to invert and solve for changes in one of the controlling parameters—\( Q_s, Q_w, W \), or \( D \)—that are needed to produce a waterfall of a known height by the fault-burial mechanism. In the next section, we develop this idea further to invert waterfall heights for paleoriver discharge.

**Inverting Waterfall Heights for Paleoriver Discharge**

We cannot expect climate forcing to uniquely affect a single variable in a catchment-fan system. However, we argue that for small catchment-fan systems, it is reasonable to consider changes in water discharge as the first-order driver of channel slope variations on the

![Figure 4. Effect of changes in water discharge (\( Q_s \)), sediment flux (\( Q_w \)), channel width (\( W \)), and grain size (\( D \)) on the equilibrium slope (\( S \)) of an alluvial river (Eq. 9). Each of the four parameters is individually changed from half to double its reference value on the x-axis. At , the reference values are \( Q_s = 1[\text{m}^3/\text{s}], Q_w = 0.005[\text{m}^3/\text{s}], W = 10[\text{m}], \) and \( D = 0.01[\text{m}] \).](image)
Formation of waterfalls by intermittent burial of active faults

alluvial fan while keeping other parameters, in particular \( Q_s \), fixed. It is partly justified if the catchments are near topographic equilibrium, such that sediment supply is in balance with stable tectonic uplift over the period and region of interest; in this case, the late Pleistocene in the Death Valley area (Jayko, 2005; Lee et al., 2009; Frankel et al., 2015). Climate change might also induce variations in hillslope storage of sediment (Bull, 1991; Harvey et al., 1999; DeLong et al., 2008), but storage is expected to be small in steep, rapidly uplifting landscapes (Lamb et al., 2011) typical of the semiarid southwestern United States, where we apply the model. We nevertheless recognize that any change in sediment flux, grain size, and channel width is expected to scale positively with increased water discharge (Fig. 4). The effect would be to partly reduce the inferred change in channel-bed slope, \( \Delta S \), caused by \( Q_s \) alone, which would lead to smaller waterfall height \( h_{\text{max}} \) by fault burial. Changes in riverbed slopes can also result from autogenic mechanisms (Nicholas and Quine, 2007; van Dijk et al., 2009; Reitz and Jerolmack, 2012), but the uniformity of the field sites we use—all are currently aggraded in or close to the steep geometry (as discussed in “Field Sites and Methods” section)—supports the argument of uniform external forcing. As we will show, our inferred water discharge changes inverted from measured waterfall heights are regionally consistent and are comparable to independent precipitation proxies.

Here, we show how measurements of waterfall height, along with other field measurements, can be used to infer paleoriver bankfull discharge. Assuming that the catchment is currently in a steep configuration, field observations give the modern channel-bed slope \( S_{\text{modern}} \), channel width \( W \), and median bed grain size, \( D \). By rearranging Equations 6 and 7, the lower bankfull discharge for the steep configuration can be estimated from:

\[
Q_{w, \text{low}} = 8.1W \left( \frac{\tau RD}{S_{\text{modern}}} \right)^{1/3} \left( \frac{S_{\text{modern}}}{k} \right)^{3/2}. \tag{11}
\]

The higher bankfull water discharge can also be found from Equations 6 and 7, except in this case, the channel-bed slope \( S_{\text{gentle}} \) is inferred from the waterfall height from Equation 1, that is, \( S_{\text{gentle}} = S_{\text{modern}} - (h_{\text{max}}/L_{\text{fan}}) \). Thus, the high bankfull water discharge becomes

\[
Q_{w, \text{high}} = 8.1W \left( \frac{\tau RD}{S_{\text{modern}}} \right)^{1/3} \left( \frac{S_{\text{modern}} - h_{\text{max}}}{k} \right)^{3/2}. \tag{12}
\]

Equation 13 is a function of the three parameters \( S_{\text{modern}}, h_{\text{max}}, \) and \( L_{\text{fan}} \), which can all be measured in the field and/or from remote-sensing data. To test the validity of the model, we verified Equation 13 with Gower Gulch, which experienced a known man-made change in drainage area that resulted in fan incision and exposed a waterfall. Next, we applied the model to reconstruct discharge changes during the Pleistocene based on surveyed waterfalls in the Death Valley area.

FIELD SITES AND METHODS

Field Sites

We applied the alluvial fault-burial mechanism to field sites in southern California (Fig. 5). The three locations—Saline, Panamint, and Death Valley—lie in the southwestern corner of the Basin and Range Province, where the normal faults of horsts and grabens are linked by strike-slip faults that reflect the dextral shear component of the Walker Lane (Frankel et al., 2008). We assumed that the late Pleistocene
climate evolved similarly in the three adjacent valleys, and that neighboring fans have faced similar changes in hydraulic forcing proportional to changes in precipitation (Horton, 1945; Freeze, 1974). In most of the catchments of these sites, waterfalls and very steep knickpoints interrupt the river profiles within 100 m of the alluvial-fan apex. These steps have several times the height of coseismic throw on the range-bounding fault (Fig. 1; Klinger and Piety, 2001; Frankel et al., 2015) and so cannot be explained as a result of single earthquakes.

In Saline Valley, the studied catchment-fan systems lie on the eastern slope of the Inyo Mountains and are separated from the valley floor by the normal and east-dipping Eastern Inyo fault (Fig. 5, SV). The fault marks the abrupt transition from the very steep catchments of the Inyo Mountains, culminating at 3384 m above sea level (masl) on Keynot Peak, to the flat valley floor (320 masl). The striking transition indicates that the Eastern Inyo fault has consistently ruptured along the same surface scarp in the recent geological past. Excellent thermochronological work constrains the exhumation of the Inyo Mountains at the level of Saline Valley and sets the throw rate of the fault at 0.4–0.7 mm/yr since 2.8 Ma (Lee et al., 2009).

The second field site, in Panamint Valley, includes the catchments flowing west of the Panamint Mountains and their respective alluvial fans (Fig. 5, PV). The Panamint Valley fault zone, normal and west dipping, separates the Panamint Mountains (topped by Telescope Peak, 3367 masl) from the floor of the eponymous valley (315 masl) and is connected to the Eastern Inyo fault by the right-lateral strike-slip Hunter Mountain fault (Burchfiel et al., 1987). Unlike the Eastern Inyo fault, the Panamint Valley fault zone has a complex surface expression with several successive splay faults separating the basin from the mountain. As a consequence, alluvial fans are often telescoped and abandoned by the changing location of the surface scarp (Numelin et al., 2007; Mason and Romans, 2015). Slip rate on the fault zone ranges from 0.1 to 2 mm/yr (Hart et al., 1989), with minimal slip rate of 0.34 mm/yr since 0.9 Ma.

Figure 6. Maps and profiles of Gower Gulch extracted from the light detection and ranging (LiDAR) survey of Snyder and Kammer (2008). (A) Map of the alluvial fan at the outlet of Gower Gulch. The continuous black line marks the modern path of the Gower Gulch, and the dashed line is its abandoned course, while the dotted line indicates the trace of the fan profile. (B) Close-up of the fan apex, where arrows indicate the surface trace of the Black Mountain fault zone (BMFZ). (C) Longitudinal projected profiles of the fan surface, the abandoned channel, and the modern channel. The step at the apex is made of a vertical waterfall topped by an incised ledge that is not picked up by LiDAR (for detailed view, see Fig. 7; masl—m above sea level).
Formation of waterfalls by intermittent burial of active faults

Figure 7. Apex of the Gower Gulch fan. Gower Gulch lies 20 km to the north of Badwater in Figure 4. To the right, the picture is completed with an interpretation sketch: the abandoned steep alluvial-fan surface is in medium gray, with dashed lines projecting its elevation onto the bedrock footwall, and the incised channel in light gray; C indicates colluvium that covers the abandoned alluvial-fan surface, and the upward arrows are the fault plane.

around Ballarat, next to our zone of study (Vogel et al., 2002).

The third field site lies along the Central Death Valley fault zone that runs at the foot of the Black Mountains, one valley east of the Panamint site (Fig. 5, DV). The configuration of the Black Mountain catchment-fan systems on the east flank of Central Death Valley is similar to Saline Valley with a well-defined single fault trace marking the boundary between the steep catchments of the Black Mountains, peaking at Dante’s view (1699 masl), and the flat bottom floor (85 m below sea level), over which alluvial fans aggrade (Jennings, 1994). The west-dipping Black Mountain fault zone has a normal motion, and the Holocene slip rates are estimated between 1 and 3 mm/yr, with average coseismic throw around 2.5 m (Klinger and Pitney, 2001).

In Death Valley, we additionally used the alluvial fan of Gower Gulch (4 km south of the junction between Highway 190 and Badwater Road, 36°24.6′N, 116°50.5′W; Fig. 6) as a controlled case study to test our hypothesis. In 1941, to protect settlements at Furnace Creek, the flows of the Furnace Creek catchment were diverted into the small mudstone catchment of Gower Gulch, effectively increasing its drainage area from 5.8 km² to 439 km² (Troxel, 1974; Dzurisin, 1975; Snyder and Kammer, 2008) and routing igneous and metamorphic cobbles from the Amargosa Range through the original mudstone catchment. As a result of the increased water discharge, the alluvial fan of the enlarged catchment dramatically incised. In 2014, a 6.75 m waterfall was exposed at its apex, where the extensional Death Valley fault zone bounds the mountain (Fig. 7). In 1974, Dzurisin (1975) measured 5.7 m of incision at the apex of the fan; 84% of the total incision was already completed in the 33 yr that followed the capture, and 16% occurred in the remaining 40 yr. The fast incision response of the alluvial channel in the decades that followed the capture suggests that the modern geometry is close to equilibrium.

The drainage areas of the studied catchments vary between 5 and 50 km² (see Table 1 for details), and they all share the same attributes of steep catchments (gaining on average 300 m for every horizontal kilometer) with a high relief (1500–2500 m). All the alluvial fans but one (McElvoy in Saline Valley) are barely incised. They are in a steep configuration corresponding to the contemporary interglacial aridity that followed the last pluvial maximum, when we would expect the fans to be incised by the greater water discharge.

The three sites experience a similar arid climate with a gradient in precipitation increasing with altitude from 0–4 cm/yr on the valley floor to 9–20 cm/yr at 1000 masl and above (Jayko, 2005). Rain is very infrequent, and several years of rainfall are often delivered during one intense short-lived event (Jayko, 2005). The recent climate history of the region saw increased aridity after the moisture high of the last pluvial maximum. At 20 ka, the region of Death Valley is estimated to have experienced about twice the amount of modern precipitation with an average temperature 5–6 °C cooler than today according to paleolake levels (Ku et al., 1998; Lowenstein et al., 1999; Menking et al., 2004), pollen (Thompson et al., 1999), and oxygen isotope records (Quade et al., 2003). To reconstruct a ratio for water discharges that explains all surveyed waterfalls created at different times in the late Pleistocene, we relied on the assumption that the late Pleistocene climatic cycles were similar.

Field Methods and Collected Data

We surveyed a total of 62 waterfalls in 18 catchments, listed in Table DR1.1 We restricted the survey to the first three waterfalls within a few hundred meters upstream of the alluvial-fan apex to avoid falls that could have significantly changed height as they retreated or that could be due to coalescing steps during upstream propagation. Successive waterfalls in the same canyon would be the result of successive fault-burial events. The heights were measured from the surface of the plunge pool alluvium to the lip of the fall using a handheld laser range finder with 10 cm precision. In a few places, waterfalls and surrounding cliffs were impassable, limiting the survey to the first obstacle. Examples of surveyed waterfalls are shown in Figure 1.

We surveyed the geometry of the active channel at the fan apex in catchments selected for the analysis and a few other ones (Table 1). Sediment grain-size values are based on the median value of the second semi-axis of 100 grains measured every 0.5 m along a survey measuring tape stretched in the along-stream direction across bars and thalweg. At a few sites, only 50 grains were measured. The hydraulic radius $R_h$

---

1GSA Data Repository item 2017320, List of height, location and type of all 62 surveyed waterfalls, is available at http://www.geosociety.org/datarepository/2017 or by request to editing@geosociety.org.
was calculated as the bankfull cross-sectional area of flow divided by the length of the bankfull wetted perimeter. These geometric parameters were surveyed with a hand level and a rod in topographic profiles across channels (Fig. 8). To find the channel bankfull depth \( h_{bf} \) we used gravel bar tops (of height above thalweg \( z_{th} \)), to which we add the water depth critical for the incipient motion of sediment \( h_{c} \), depth at which 

\[
\tau = \tau_c \quad (\text{Eq. 9}),
\]

so that \( h_{bf} = z_{th} + h_c \). Channels were identified as fluvial channels by observation of sorting and imbrication of clasts in active contacts with respect to waterfalls. We used the 10 m Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) V2 (a product of the National Aeronautics and Space Administration [NASA] and Ministry of Economy, Trade, and Industry [METI] of Japan) to survey the alluvial-fan profiles and lengths in Saline, Panamint, and Death Valleys.

All the surveyed streams had bed slopes between 4% and 17% (Fig. 9). To account for this, we chose a morphological drag of 40% \((\tau_c/\tau = 0.4)\) of the total stress, which corresponds to an average value for steep streams (Scheingross et al., 2013).

### RESULTS

#### Proof of Concept at Gower Gulch

North of the Black Mountains in Death Valley, the Gower Gulch incised active channel has a relatively gentle grade (3.7%, vs. 4.2% for the abandoned channel on the fan surface), and is coarse grained \((D_{50} = 16 \text{ mm})\), with a bankfull discharge of \( Q_s = 27.5 \text{ m}^3/\text{s} \) (Eq. 6 and Eq. 7) and a total bankfull Shields stress of \( \tau_s = 0.36 \). We note that \( \tau_s \) is about six times greater than the critical Shields stress at a slope of \~4% (Lamb et al., 2008). Such a large value corresponds to the range of Shields stresses surveyed on other fans of the region in this study (Table 1) and by Stock et al. (2008).

Unlike the active channel, there are no sediment bars in the steep (4.2%) abandoned channel that could help constrain bankfull hydraulic radius. To remediate this, we use the same bankfull Shield stress calculated for the active channel, and we calculated a bankfull hydraulic radius of \( R_s = 0.073 \) m using Equation 9, obtaining a bankfull water discharge of \( Q_s = 0.8 \text{ m}^3/\text{s} \). The measured bed grain sizes in the active channel \((D_{50} = 4.2 \text{ mm})\) were a factor of four finer than the active channel. We found that the modern bankfull water discharge was 34-fold the pre-1941 discharge, and this is of the same order as the change in drainage area caused by the engineered diversion (75-fold).

At the Gower Gulch site, we can assess the validity of Equation 1 because we independently know that the difference between the gentle and steep channel-bed slopes is \( \Delta S = 0.5\% \) (from slopes of 3.7% and 4.2%, respectively) and that

---

**Table 1. List of hydraulic parameters in all the surveyed catchments in Saline, Panamint, and Death Valleys**

<table>
<thead>
<tr>
<th>Catchment</th>
<th>Fan length (m)</th>
<th>Watershed area (km²)</th>
<th>Channel width (m)</th>
<th>Slope (%)</th>
<th>(D_{84}) (mm)</th>
<th>(D_{50}) (mm)</th>
<th>(\tau_s)</th>
<th>(\tau_c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gower Guich active channel</td>
<td>1300</td>
<td>439</td>
<td>30</td>
<td>3.7</td>
<td>16°</td>
<td>59.5°</td>
<td>0.36</td>
<td>0.285</td>
</tr>
<tr>
<td>Gower Guich old channel</td>
<td>1300</td>
<td>5.8</td>
<td>6.1</td>
<td>4.2</td>
<td>4.7°</td>
<td>9.9°</td>
<td>0.36°</td>
<td>0.073</td>
</tr>
<tr>
<td>Badwater</td>
<td>1770</td>
<td>5.2</td>
<td>9.2</td>
<td>13.1</td>
<td>18.7</td>
<td>41.9</td>
<td>0.28</td>
<td>0.071</td>
</tr>
<tr>
<td>S Badwater 3</td>
<td>850</td>
<td>3.9</td>
<td>6.5</td>
<td>8.9</td>
<td>7.4°</td>
<td>77.3°</td>
<td>0.31</td>
<td>0.047</td>
</tr>
<tr>
<td>S Badwater 4</td>
<td>950</td>
<td>6.1</td>
<td>4.8</td>
<td>7.3</td>
<td>5.2°</td>
<td>11.3°</td>
<td>0.38</td>
<td>0.049</td>
</tr>
<tr>
<td>S Badwater 5</td>
<td>560</td>
<td>1.9</td>
<td>13.6</td>
<td>8</td>
<td>4.7°</td>
<td>9.9°</td>
<td>0.43</td>
<td>0.046</td>
</tr>
<tr>
<td>Coffin Canyon</td>
<td>1000</td>
<td>11.1</td>
<td>6.4</td>
<td>7.9</td>
<td>9.3</td>
<td>22.6</td>
<td>0.40</td>
<td>0.085</td>
</tr>
<tr>
<td>Pleasant Canyon</td>
<td>2500</td>
<td>33</td>
<td>5.3</td>
<td>8.9</td>
<td>21</td>
<td>93</td>
<td>0.20</td>
<td>0.059</td>
</tr>
<tr>
<td>South Park Canyon</td>
<td>1250</td>
<td>8.3</td>
<td>6.8</td>
<td>11.7</td>
<td>19.3</td>
<td>58.1</td>
<td>0.34</td>
<td>0.146</td>
</tr>
<tr>
<td>Pat Keyes Canyon</td>
<td>1800</td>
<td>21.4</td>
<td>18.4</td>
<td>11</td>
<td>8.3</td>
<td>51.8</td>
<td>1.06</td>
<td>0.135</td>
</tr>
<tr>
<td>McElvoy</td>
<td>2300</td>
<td>23.3</td>
<td>11.6</td>
<td>10.3</td>
<td>44.4</td>
<td>157.1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Keynot</td>
<td>1500</td>
<td>19.3</td>
<td>15.3</td>
<td>29.2</td>
<td>142.3</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Beveridge</td>
<td>2100</td>
<td>28.6</td>
<td>10.6</td>
<td>16.9</td>
<td>58</td>
<td>204</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Hunter Canyon</td>
<td>2000</td>
<td>23.2</td>
<td>15.7</td>
<td>10.7</td>
<td>36</td>
<td>162.8</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Craig Canyon</td>
<td>1700</td>
<td>22.6</td>
<td>14.4</td>
<td>9.5</td>
<td>60.5</td>
<td>275.1</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Notes: Grain sizes were measured by picking about 100 clasts along a stream transect with 0.5 m spacing crossing thalweg and bars.  
1Grain-size distributions based on less than 100 counts; Gower Guich (GG) active = 55, GG old = 50, S Badwater (SB) 3 = 50, SB4 = 75, SB5 = 75 grain counts.  
2Reconstructed value.

---

**Figure 8. Cross section of three of the surveyed channels where we measured bankfull hydraulic geometry.** The bankfull wetted area is represented in gray and is based on the elevation of the top of gravel bars.
the height of the waterfall is 6.75 m. Picking a value for the length of the fan is equivocal because its toe is not entirely equidistant to the apex; e.g., Gower Gulch fan is longer on its flanks (1.3 km) than its front (1.1 km; Fig. 6A). We chose to pick the middle section of the fan and measure a length of 1.1 km (dotted line in Fig. 6C). This way, we avoided zones where neighboring fans coalesced, and it was the easiest method to replicate at all sites. Equation 1 predicts a waterfall height of $\Delta h_{\text{fan}} = 5.5$ m. The predicted height is 20% shorter than the measured height of 6.75 m. The difference is partly due to picking a shorter central section for $L_{\text{fan}}$. Alluvial fans often have deposits from debris flows running out at their apexes (Hooke, 1967); this could be another reason why the predicted height somewhat underestimates the actual one. Finally, Equation 1 relies on the assumption of a linear longitudinal profile, and small deviations would cause mismatch between predicted and measured heights (Figs. 6C and 9).

The retreat of knickpoints through the Gower Gulch catchment after the change of hydraulic regime has been documented in Snyder and Kammer (2008). We observed additionally that the fault scarp waterfall lies 4 m in retreat of the fault plane. This corresponds to an upstream waterfall retreat rate of more than 5 cm/yr.

**Pleistocene Waterfalls**

The 62 surveyed waterfalls have heights ranging from 1 to 25 m and a mean height of 6 ± 4.6 m. The longitudinal profiles of the channels flowing on the alluvial fans (Fig. 9), while slightly concave or convex, satisfactorily match the linear assumption necessary for Equation 1. On all these fans, the active channel is only incised by up to a couple meters at the apex. We evaluated field sites for their application to the fault-burial mechanism based on our field observations. The origins of many other waterfalls have reasonable explanations, and we excluded them from the analysis. Table DR1 (see footnote 1) lists the waterfalls that were kept (19 individual steps) or discarded (43) in the Selection column. The reasoning behind the selection or exclusion is explained below.

The range-bounding faults in both Saline and Death Valley sites have an almost unique surface trace where slip accumulated over multiple cycles of fan aggradation and incision, allowing the repetition of fault burial and exposure. On the contrary, complex surface faulting in Panamint Valley (Fig. 5) is problematic. When the fault splays and creates a new surface rupture at each earthquake, cumulative tectonic displacement cannot build up on one single scarp, and no waterfall greater than the throw of a single earthquake is created. We excluded catchments where field inspection indicated that multiple splay faults close to the waterfalls were recently active (Table DR1 [see footnote 1]).

Our analysis is also restricted to fluvially dominated fans for this study, and we excluded from further analysis fans that we observed to be dominated by debris flows (Table DR1 [see footnote 1]). In Saline Valley, all of the six investigated alluvial fans, except Pat Keyes, were dominated by debris flows. The 13 studied alluvial fans of Panamint and Death Valleys were all dominated by fluvial processes, except for South Badwater 4 in Death Valley. Debris-flow snouts occur at the apex of many fluvially dominated fans in Death Valley, but they do not run out more than at most a few tens of meters on the fan surface (see Hooke, 1967), and the fan channels and exposed stratigraphy are clearly dominated by fluvial deposits.

Close inspection in the field is a necessity to identify and exclude waterfalls that are controlled by lithological contacts or local faults. Lithological contrasts have the potential to allow the development of steep knick zones completely unrelated to the accumulation of tectonic throw on the front fault. For example, in Saline Valley’s Craig Canyon, three steep knickpoints higher than 5 m correspond to lumps of a granitic intrusion into a weaker gneissic marble. In Panamint Valley’s Surprise Canyon, two successive waterfalls of heights 2.4 and 3.4 m coincide with faults crossing the bedrock channel subparallel to the waterfall plane. The faults are inactive, but there is a systematic contrast of fracture density on either side of the slip plane. The hanging wall is typically densely fractured over a thickness of ~1 m away from the fault plane, while the footwall remains massive. This contrast leads to a differential erodibility that explains the location of the waterfall.

In several streams of Panamint Valley, groups of small waterfalls (between 1 and 5 m) closely succeed each other, and we interpret them as step pools, thus excluding them from analysis. Two particularly high waterfalls (>20 m) were found in South Badwater 3 and 4. Both are the fourth waterfall from the outlet and are at least twice as large as the downstream ones.
They are the likely result of several waterfalls that merged during their upstream migration, and we excluded them. Twice, in the canyons of South Badwater 3 and 4, successive steps separated by only a few meters were combined, bringing the number of waterfalls selected for the test from 19 to 15 (Table 2).

**Time-Scale Regime**

The forcing, uplift, and sedimentary time scales of the selected field sites have to be established to pick a definition of waterfall height (Eqs. 1, 3, or 4) for the analysis. We used a forcing timescale \( t_f \) of half of the 23 k.y. precession signal that dominates the recent climatic variability to represent the dry half of the cycle (Table 2). The uplift time scales are easily defined in the Death Valley area, with known, relatively fast fault slip rates (Eq. 2; Table 2). The sedimentary time scale is more difficult to establish. Jayko (2005) provided estimates of denudation rates for the Panamint and Death Valley sites based on the volumes of alluvial fans, assuming that they are entirely built on a flat valley floor. These estimates roughly constrain the coarse fraction of the sediment flux that built the fans are built with the coarse fraction of the flux only. Without estimates of the different proportions of fluxes, we supposed that the coarse load represents half of the total load at the bottom of these steep catchments, following Turowski et al. (2010). These estimates are sufficient to warrant regime I (Fig. 3); in order to bring any sites into regime III, the erosion rates would have to be at least one order of magnitude lower (Table 2).

**Discharge Reconstruction**

For each of the 15 waterfalls, we reconstructed the ratio between higher paleoriver water discharge and modern discharge with Equation 13 (Fig. 10). Gower Gulch has a 34-fold increase in water discharge (in this case, pre- and post-1941), while all the other waterfalls point at a mean value of 1.19 ± 0.14 (one standard deviation). The enormous change in water discharge in Gower Gulch did not result in a tall waterfall because the median grain size \( D \) concurrently increased from 4.7 mm to 16 mm and limited the decrease in channel slope (Eq. 10). The waterfalls of Panamint and Saline Valley require a smaller change in water discharge ratio (1.07 ± 0.02), while the waterfalls of Death Valley require larger changes in water discharge (1.26 ± 0.13) and display a small positive scaling between discharge ratio and waterfall height.

**DISCUSSION**

**Comparison to Climate Proxies and Uncertainties**

Given the important uncertainties affecting estimates of past precipitation levels and in our own reconstructions of absolute water discharge, we cannot require a strict overlap to confirm the validity of the proposed model. Nonetheless we need to evaluate the compatibility of a regional increase of precipitation leading to a 1.19 ± 0.14 rise in water discharge with the climate record. A sediment core in the Badwater Basin of Death Valley indicates significantly wetter conditions from 35 ka to 10 ka while Death Valley hosted the perennial Lake Manly (Lowenstein et al., 1999). A study of the Last Glacial Maximum (LGM) highstand of an endorheic lake in New Mexico suggests doubled LGM precipitation rates in the southwestern United States (Menking et al., 2004). Paleobotanical studies at Yucca Mountain, 85 km NNE of Badwater, propose 1.3–1.4 or 2.1–2.9 times larger precipitations at the LGM (Spaulding, 1985; Thompson et al., 1999, respectively). Finally, an isotopic study of ostracode records in southern Nevada testified to a wetter LGM as well (Quade et al., 2003). The requirement of a 1.19 ± 0.14 greater water discharge for the low channel-bed slope geometry is compatible with all the various climate reconstructions, albeit on the lower end.

Our method requires a series of assumptions affecting the absolute values of the high water discharges that shaped the now-buried gentler channel-bed slope. The main uncertainty in our approach is that we only change the variable \( Q_w \) to keep the bankfull Shields stress constant with

---

**TABLE 2. LIST OF ALL THE WATERFALLS SELECTED FOR THE DEMONSTRATION IN SALINE, PANAMINT, AND DEATH VALLEYS**

<table>
<thead>
<tr>
<th>Catchment</th>
<th>Erosion rate (mm/yr)</th>
<th>Uplift (mm/yr)</th>
<th>( t_f ) (yr)</th>
<th>( t_u ) (yr)</th>
<th>( t_s ) (yr)</th>
<th>Heights (m)</th>
<th>Steep slope</th>
<th>Gentle slope</th>
<th>( Q_w ) modern (m³/s)</th>
<th>( Q_w ) past (m³/s)</th>
<th>( Q_w ) ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gower Gulch, DV</td>
<td>0.15</td>
<td>2</td>
<td>11,500</td>
<td>4720</td>
<td>9980</td>
<td>6.75</td>
<td>0.042</td>
<td>0.037</td>
<td>27.5</td>
<td>0.8</td>
<td>34</td>
</tr>
<tr>
<td>Badwater, DV</td>
<td>0.15</td>
<td>2</td>
<td>11,500</td>
<td>6300</td>
<td>6792</td>
<td>12.6</td>
<td>0.089</td>
<td>0.074</td>
<td>0.079</td>
<td>0.101</td>
<td>1.25</td>
</tr>
<tr>
<td>S Badwater 3, DV</td>
<td>0.15</td>
<td>2</td>
<td>11,500</td>
<td>3095</td>
<td>4319</td>
<td>[2.93, 4.16]</td>
<td>0.089</td>
<td>0.082</td>
<td>0.079</td>
<td>0.089</td>
<td>1.121</td>
</tr>
<tr>
<td>S Badwater 4, DV</td>
<td>0.15</td>
<td>2</td>
<td>11,500</td>
<td>7820</td>
<td>4027</td>
<td>[4.56, 5.55, 5.63]</td>
<td>0.073</td>
<td>0.057</td>
<td>0.104</td>
<td>0.146</td>
<td>1.406</td>
</tr>
<tr>
<td>S Badwater 4, DV</td>
<td>0.15</td>
<td>2</td>
<td>11,500</td>
<td>5345</td>
<td>2752</td>
<td>10.69</td>
<td>0.073</td>
<td>0.062</td>
<td>0.104</td>
<td>0.13</td>
<td>1.25</td>
</tr>
<tr>
<td>S Badwater 5, DV</td>
<td>0.09</td>
<td>2</td>
<td>11,500</td>
<td>5005</td>
<td>4720</td>
<td>10.01</td>
<td>0.08</td>
<td>0.062</td>
<td>0.29</td>
<td>0.406</td>
<td>1.401</td>
</tr>
<tr>
<td>S Badwater 5, DV</td>
<td>0.09</td>
<td>2</td>
<td>11,500</td>
<td>2715</td>
<td>2560</td>
<td>5.43</td>
<td>0.08</td>
<td>0.069</td>
<td>0.29</td>
<td>0.344</td>
<td>1.188</td>
</tr>
<tr>
<td>S Badwater 5, DV</td>
<td>0.09</td>
<td>2</td>
<td>11,500</td>
<td>3515</td>
<td>3315</td>
<td>7.03</td>
<td>0.08</td>
<td>0.067</td>
<td>0.29</td>
<td>0.364</td>
<td>1.256</td>
</tr>
<tr>
<td>Coffin Canyon, DV</td>
<td>0.06</td>
<td>2</td>
<td>11,500</td>
<td>9300</td>
<td>7328</td>
<td>18.6</td>
<td>0.079</td>
<td>0.06</td>
<td>0.316</td>
<td>0.452</td>
<td>1.43</td>
</tr>
<tr>
<td>Pleasant Canyon, PV</td>
<td>0.11</td>
<td>0.34</td>
<td>11,500</td>
<td>4555</td>
<td>3687</td>
<td>8.19</td>
<td>0.053</td>
<td>0.046</td>
<td>0.456</td>
<td>0.479</td>
<td>1.051</td>
</tr>
<tr>
<td>South Park Canyon, PV</td>
<td>0.2</td>
<td>0.34</td>
<td>11,500</td>
<td>2365</td>
<td>2239</td>
<td>9.11</td>
<td>0.068</td>
<td>0.061</td>
<td>0.155</td>
<td>0.168</td>
<td>1.09</td>
</tr>
<tr>
<td>South Park Canyon, PV</td>
<td>0.2</td>
<td>0.34</td>
<td>11,500</td>
<td>3140</td>
<td>1162</td>
<td>4.73</td>
<td>0.068</td>
<td>0.064</td>
<td>0.155</td>
<td>0.161</td>
<td>1.045</td>
</tr>
<tr>
<td>South Park Canyon, PV</td>
<td>0.2</td>
<td>0.34</td>
<td>11,500</td>
<td>4095</td>
<td>1544</td>
<td>6.28</td>
<td>0.068</td>
<td>0.063</td>
<td>0.155</td>
<td>0.164</td>
<td>1.06</td>
</tr>
<tr>
<td>Pat Keyes, SV</td>
<td>0.3</td>
<td>0.6</td>
<td>11,500</td>
<td>5830</td>
<td>1538</td>
<td>11.7</td>
<td>0.117</td>
<td>0.111</td>
<td>1.956</td>
<td>2.11</td>
<td>1.079</td>
</tr>
<tr>
<td>Pat Keyes, SV</td>
<td>0.3</td>
<td>0.6</td>
<td>11,500</td>
<td>5800</td>
<td>1530</td>
<td>11.6</td>
<td>0.117</td>
<td>0.111</td>
<td>1.956</td>
<td>2.109</td>
<td>1.079</td>
</tr>
</tbody>
</table>

Note: Erosion rates are extrapolated from Kirby (2013). Time scales: \( t_f \)—time scale of forcing; \( t_u \)—time scale of uplift; \( t_s \)—sedimentary time scale. Waterfall heights lumped by a square bracket are in close succession and were considered as one. The maximum \( t_u \) was calculated with the volume necessary to aggrade a fan opening at 90° to a height equivalent to the maximum height of the scarp \( (h_{esc}) \) at the apex, assuming there were no preexisting canyons. DV—Death Valley; PV—Panamint Valley; SV—Saline Valley; \( Q_w \)—water discharge.
a changing channel slope, and we ignore the coevolution of $Q_w$, $D$, and $W$. This results in a possible underestimate of the $Q_w$ ratio, since $Q_w$, $D$, and $W$ are expected to grow together with $Q_w$ (Gilbert and Murphy, 1914; Leopold and Maddock, 1953; Paola et al., 1992). However, all assumptions were identical for all field sites, and any effect, skewing to greater or smaller values of $Q_w$, would be equally applied in all our sites. The uniformity of the water discharge ratio across the field sites is important and points at a unique external source of forcing.

Another potential source of error is the assumption that climatic cycles were all similar during the late Pleistocene and Holocene. We used waterfalls presumably created in the late Pleistocene to compute a ratio of water discharges using the modern steep channel slope as a reference for dry conditions. At some sites, we also used multiple successive waterfalls, which, by burial and exposure, would be the products of successive Pleistocene climate cycles. We collapsed all the different episodes onto a single value of water discharge ratio, and for that, we relied on the assumption that Pleistocene climatic cycles were self-similar. The scatter amongst the ratios presented in Figure 10 should be in part explained by variability among climatic cycles during the Pleistocene.

Finally, autogenic dynamics such as landslides, drainage captures, or changes in channel planform morphology can trigger aggradation or incision of the studied alluvial fans, irrespective of climatic forcing. These internally forced events could increase the scatter between sites and/or produce waterfalls unrelated to climate forcing. Such autogenic variations in the modern drainages are unlikely drivers in our study area, as the uniformity among field sites testifies: All fans but one are currently aggraded in a steep geometry.

**Further Examples of Fault-Burial Waterfalls**

All the field sites of this study lie in a zone of fast active tectonics and are in regime I; that is, we expect waterfalls to reach the height $h_{max}$ (Fig. 3). For the fault-burial mechanism to significantly impact the river system, $h_{max}$ needs to be clearly taller than coseismic throw on the fault. If $h_{max}$ is similar to the coseismic throw, alluvial shielding cannot accumulate displacement greater than the throw of a single event. Its only effect would merely be to delay the release of the coseismic throw in the river system. In Death Valley, $h_{max}$ is as high as 20 m (Fig. 10) and largely exceeds the characteristic coseismic throw of ~2.5 m on the Black Mountain fault (Klinger and Piety, 2001); alluvial shielding can release here the equivalent of two to eight earthquakes in the river system at once.

We expect regime II in areas where the fault throw rates are not fast enough to bring the scarp to the surface. This is the case for Finnegan and Balco’s field site in the Santa Lucia Mountains of central California (Finnegan and Balco, 2013). They proposed that Arroyo Seco’s alluvial-fan aggradation and incision in Salinas Valley could shield and expose the scarp of the Reliz Canyon fault to release a waterfall in the upstream catchment. However, with a very slow fault throw of 0.015 mm/yr (Rosenberg and Clark, 2005), cyclic aggradation-incision could only result in waterfalls of a height $h_f = U \cdot t_f = 0.2$ m, with $t_f = 11.5$ k.y., to represent the wet half of the dominant precession. This height would be a small fraction of $h_{max}$, which is 30 m according to the current incision of the stream (Finnegan and Balco, 2013). The uplift time scale, $t_u$, to reach $h_{max}$ is 2 m.y. at the current fault throw rate (Eq. 2). We can also make a rough estimate of the time necessary to fully aggrade the fan, where $t = 7.4$ k.y., using Equation 3 and the following parameters. The erosion rate is ~0.1 mm/yr on the eastern slopes of the Santa Lucia Mountains (Griggs and Hein, 1980; Montgomery, 1993), and the area of the Arroyo Seco is ~623 km$^2$. The volume of the canyon incised in the alluvial fan is ~0.23 km$^3$, and we set the coarse fraction $f$ at 0.5 following Turowski et al. (2010). The Arroyo Seco would squarely sit in regime II ($t_u > t > t_f$; Fig. 3). The small knickpoints could nevertheless retreat 12 km in the mudstone bedrock of the lower reach before stalling and accumulating on the crystalline core of the Santa Lucia Mountains, where Finnegan and Balco (2013) documented a large knickpoint that marks the upstream connection of the channel with 30-m-high terraces.

In the Big Tujunga catchment of the San Gabriel Mountains in southern California, DiBiase et al. (2014) proposed that tectonic deformation could accumulate under alluvium before being released as waterfall. The extensive urbanization of the San Gabriel foothills masks the initial geometry of the alluvial fans, and the gentle channel slope of the fan is currently buried. We can nevertheless make an estimate of the volume necessary to aggrade the fan and constrain the sedimentary time scale $t_f$ (Eq. 3). The fan is 7 km long from the Sierra Madre fault zone to the Hansen Dam Flood Protection Basin, with an additional 3 km of backfilling in the valley; the narrow fan is never wider than 700 m;
finally, a change of channel-bed slope of half a percent would result in a shielding thickness of 35 m at the scarp, which defines a total volume of \( \sim 8.4 \times 10^7 \) m\(^3\). The \( \sim 300 \) km\(^2\) Big Tujunga catchment erodes at around 0.2 mm/yr (DiBiase et al., 2014), and it would take no more than \( t = 2.8 \) k.y. to bury the fault scarp entirely (Eq. 3, with \( k = 0.5 \)). The uplift rate is \( \sim 1 \) mm/yr on the Sierra Madre fault zone (Lindvall and Rubin, 2008), and \( t = 35 \) k.y. if the total burial at the scarp is 35 m. Assuming a climate forcing time scale on a similar period as Death Valley \( (\sim 11.5 \) k.y.), the interface between fan and scarp can then produce waterfalls equal to \( h = U \cdot t_s = 11.5 \) m. Waterfalls around that height or greater are common in the catchment (DiBiase et al., 2014). The Big Tujunga catchment would lie in regime II with \( t_s > t_f > t_u \) (Fig. 3).

Regime III requires a large alluvial fan that aggrades slowly together with a fast fault-slip rate. These conditions go against the trend discussed in Allen and Densmore (2000), which inversely correlates the size of alluvial fans with fault-slip rates, and regime III should rarely be met.

Implications for Landscape Evolution

Alluvial fans can undergo episodes of incision without external forcing caused by feedbacks between the fan and its catchment (Humphrey and Heller, 1995; Carretier and Lucazeau, 2005; Pepin et al., 2010), by changes from sheet to channelized flow (Nicholas and Quine, 2007; van Dijk et al., 2009), or by channel avulsion (Reitz and Jerolmack, 2012). Catchment reorganization by drainage capture will also change the water discharge at the outlet and affect the equilibrium geometry of the alluvial fans of the catchments. The fault-burial mechanism is potentially of great importance for the generation and persistence of autogenic signals in a fan-catchment system that undergoes autogenic incisional phases. As waterfalls retreat in a drainage basin, they force a local pulse of erosion by immediately lowering the hillslope base level (Gallen et al., 2011; Attal et al., 2015). In turn, this erosion pulse will increase the ratio \( Q_s/Q_w \) and could lead to aggradation of the fan and renewed shielding of an active scarp until the erosion pulse initiated by the waterfall propagates through the entire catchment. This dynamic is a potential driver to help sustain a series of feedbacks between fan and catchment that would lead the fan to an oscillation between periods of net aggradation and deposition called “tintinnabulation” by Humphrey and Heller (1995). As a result, the landscape is constantly reacting to new internal adjustments that do not reflect changes in its environment.

Feedbacks in a coupled catchment-fan system are further illustrated in Figure 11. Consider a system in regime I forced by a cyclic climate with alternation of wet and dry phases and regular earthquakes that force base-level fall (Fig. 11B). The alluvial fan aggrades in dry periods and incises during wet ones, alternatively burying and exposing the active fault scarp (Fig. 11C). Meanwhile, the fault ruptures repeatedly, and coseismic waterfalls are released in the river in the absence of an alluvial shield, or tectonic slip accumulates until bedrock pierces through alluvium when alluvial fill buries the scarp (Fig. 11C, using the same representation introduced in Fig. 11A). Tectonic throw reaches the new base level during the period of shielding. At the end of this period, the fan incises back to a gentle configuration, and

![Figure 11](image-url)

**Figure 11.** Effect of the regime I fault-burial mechanism on knickpoint release in the river system. (A) The creation of a coseismic knickpoint and subsequent retreat upstream can be represented as the elevation of the stream immediately upstream of the scarp. (B) Periodic climatic forcing expressed as the ratio between sediment flux and water discharge, and tectonic forcing represented by the throw of earthquakes on the range-bounding fault. (C) The elevation of the riverbed immediately upstream of the fault scarp (using the representation introduced in A) shows how the tectonic and climatic forcing in B are translated into alluvial aggradation and uplift of the scarp. (D) The cumulative release of waterfalls in the river system differs from the coseismic throw due to burial and incision.
the total accumulated throw $h_{\text{tot}}$ is released as a large knickpoint in the river system (Fig. 11C). The climate-governed alluvial fan thus acts as a filter on the tectonic forcing, releasing seismic throw in rarer and bigger steps on a climatic beat (dotted vs. solid line in Fig. 11D).

The processes controlling waterfall retreat are not yet understood, and it is not clear whether and how waterfall retreat rates scale with waterfall height. Hayakawa and Matsukura (2003) proposed that waterfall retreat rate scales negatively with waterfall height because the erosive force of the stream would be distributed over a greater area for larger waterfalls. In that case, releasing fewer, larger, and more slowly retreating waterfalls would augment the response time of a catchment. However, Whittaker and Boulton (2012) showed that knickpoints retreat faster in regions of greater uplift. They proposed that large-amplitude tectonic perturbations result in shorter landscape response times. Although waterfalls cannot be directly compared with the knickpoints of Whittaker and Boulton (2012), the relationship between faster retreat rates and greater disturbances along the river profile could hold for single waterfalls and very steep knick zones. Additionally, if all or part of the retreat of a waterfall results from the impact of sediments on canyon walls during free fall, then higher waterfalls should result in more energetic impacts, and the retreat rate could scale positively with waterfall height (Lamb and Dietrich, 2009; Scheingross et al., 2017). Faster retreat rates for larger waterfalls would suggest that the discrete release of accumulated slip shortens the landscape response time and enhances its reactivity (Allen, 2005). As these knickpoints are exposed according to a climatic beat, they have the capacity to reduce the damping of climate-driven sediment fluxes (Armitage et al., 2013). In consequence, the fault-burial mechanism has the potential to improve the sensitivity of the sedimentary record to higher-frequency cycles (Simpson and Castelltort, 2012).

CONCLUSION

We demonstrate that waterfalls can be created over an intermittently alluviated dip-slip fault. Burial of the fault scarp by sediments during early Pleistocene and Holocene. The wet-dry climate cycles led to the aggradation and incision necessary for the fault-burial mechanism. The fault-burial mechanism is relevant wherever surface tectonic deformation is intermittently covered by sediments. Through the modulation of waterfalls heights, the fault-burial mechanism can affect the response time of a landscape to downstream forcing by changing the retreat rate of knickpoints. Waterfalls created this way by climate-driven aggradation and incision convolve tectonic and climatic signals.

ACKNOWLEDGMENTS

We thank Austin Chadwick, Alistair Hayden, Marisa Palucis, and Victoria Stevens for support in the field, and Mitch D’Arcy and Roman DiBiase for fruitful discussions. We thank S. Boulton and an anonymous reviewer as well as Associate Editor Karl Wegmann for their helpful reviews. This work was supported by a Doc. Mobility Fellowship of the Swiss National Science Foundation (project number: PISPKP 158716) to L.C. Malatesta; National Science Foundation grant 1147381 to M.P. Lamb; and acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for partial support of this research (grant 53204-ND8). Field work in the Death Valley National Park is registered as study DEVA-00409 with permit DEVA-2014-SCI-0040.

REFERENCES CITED


Finnegan, N.J., and Balco, G., 2013, Sediment supply, base level, braiding, and bedrock river terrace formation:
Malatesta and Lamb


Reitz, M.D., and Jerolmack, D.J., 2012, Experimental alluvial fan evolution: Channel dynamics, slope


Formation of waterfalls by intermittent burial of active faults


Troxel, B.W., 1974, Man-made diversion of Furnace Creek Wash, Zabriskie Point, Death Valley, California: California Geology, v. 27, p. 219–223.


